Showing posts with label phenotype. Show all posts
Showing posts with label phenotype. Show all posts

Thursday, 17 April 2014

Tree of Plants

Everyone knows what plants are like; they have leaves and roots, flowers and seeds. Or do they? All of these classic features of plants are actually relatively recent developments in plant evolution. Conifers don't have flowers, ferns don't have seeds or flowers and moss doesn't have leaves, roots, seeds or flowers! Leaves, roots, flowers and seeds are all features that evolved as plants adapted, starting at something like seaweed, to life on the land.

This term's issue of Phenotype has a bit of a focus on plants, and my research comic for this issue focuses on how plants evolved and adapted to land. You can download a pdf of this feature here, the full issue for the summer (Trinity) term will be available soon here.


While I was making this I started reconsidering just what the plant life cycle looks like, as a classic school education about how plants reproduce isn't very accurate! The classic teaching is that the pollen produced by a flower is like sperm in mammals (and humans), and the ovum in the flower is like the egg in mammals. In fact pollen and the developing seed are more like small haploid multicellular organisms, gametophytes, that used to be free living. If you go back through evolutionary time towards ferns then the gametophyte is a truly independent multicellular organism. Go back further still and the bryophytes spend most of their time as the gametophyte.

If you imagine the same evolutionary history for humans then it is easy to see how different this life cycle is to animals; if the ancestors of humans had a life cycle similar to ferns then, roughly speaking, ovaries and testicles would be free-living organisms that sprout a full grown human once fertilisation successfully occurs. I can't help but think that would have been a little strange!

Software used:
Autodesk Sketchbook Pro: Drawing the cells.
Inkscape: Page layout.


Thursday, 30 January 2014

Figuring Out Good Figures

The main point of doing scientific research is to share the things you discover. After all, what is the point if discovering something if no one knows about it, to work or learn from it? Science is typically shared in research papers, but the actual date is normally just in the figures (the graphs and images) while the the text describes what it means (as I have talked about before). Sharing scientific data is important, therefore good design of figures is also important. So how do you make a good figure?

Each term I make a research comic for the Oxford University Biochemical Society magazine called Phenotype. This one is all about figuring out figures. How do you make a good one, and how can you avoid getting tricked by bad ones?



Check out the comic here, the whole issue is available to download for free from here.

Software used:
Inkscape: Page layout and drawing.

Monday, 21 October 2013

The Shape of a Cell

Each term I make a research comic for the Oxford University Biochemical Society magazine called PhenotypeThe topic for this cartoon; the function of cell shape in bacteria. You might not know, but bacteria can have one of a huge variety of different shapes, but why cells have a particular shape is not a commonly asked question. To quote Kevin Young: "To be brutally honest, few people care that bacteria have different shapes. Which is a shame, because the bacteria seem to care very much.".

Check out the comic here, the whole issue will be available to download for free from here soon.



Software used:
Autodesk Sketchbook Pro: Drawing the cells.
Inkscape: Page layout.

Thursday, 2 May 2013

Cilia

Each term I make a research comic for the Oxford University Biochemical Society magazine called Phenotype. This term's topic; cilia! These organelles can be found on a huge number of eukaryotic cells, ranging from nearly every cell in your body, to free living single cell microorganisms and protozoan parasites. The most famous function of cilia is swimming or moving a cell's surroundings, like the sperm flagellum (flagellum and cilium are different names for the same structure) or the cells in your lungs which help keep them clear of mucous.

Cilia are famous for their movement, but cilia are one of our the most multifunctional cell structures and have extremely important sensory and development functions. Can you guess which four if the five classic senses (touch, taste, smell, hearing, sight) need flagella to work?

This term's research comic feature in OUBS Phenotype is all about the diverse functions of cilia/flagella. Check out the comic here, or download the whole issue for free here.


Software used:
Autodesk Sketchbook Pro: Drawing the cells.
Inkscape: Page layout.